Forward Search Temporal Planning with Simultaneous Events

Daniel Furelos-Blanco 1 Anders Jonsson 1 Héctor Palacios 2 Sergio Jiménez 3

¹Universitat Pompeu Fabra

²Nuance Communications

³Universitat Politècnica de València

June 25, 2018

Motivation (I)

Many situations in the real-world involve **simultaneous events** (e.g. relay races).

Current temporal planning algorithms do not support this kind of situations.

Motivation (II)

Allen's Interval Algebra [Jiménez et al., 2015] a domain with required simultaneous events.

PDDL 2.1 induces **temporal gaps** [Rintanen, 2015]:

- State-of-the-art planners using PDDL do not solve problems with simultaneous events.
- Potentially, more decision points.

 $move_{a.b}$ $move_{b.c}$ $move_{c.d}$

```
move_{a,b} move_{b,c} move_{c,d}
```

Figure 2: Action Schedule without Gaps

Proposed Approach

Solve temporal planning problems involving simultaneous events using classical planning

- Previous approaches already used classical planning to solve temporal problems [Long and Fox, 2003, Coles et al., 2009, Cooper et al., 2013, Jiménez et al., 2015].
- Our approach:
 - 1 Compile temporal problem into classical problem.
 - Solve problem using classical planner maintaining STNs (Simple Temporal Networks) to check temporal consistency.

Classical Planning

A classical planning **problem** is defined as

$$P = \langle F, A, I, G \rangle$$

where

- F is a set of fluents,
- lacksquare A is a set of atomic actions,
- $lue{I}\subseteq F$ is an initial state, and $G\subseteq F$ is a goal condition.

A **plan** for P is an action sequence $\pi = \langle a_1, \dots, a_n \rangle$.

Temporal Planning - Definition

- A temporal planning **problem** is a tuple $P = \langle F, A, I, G \rangle$.
- Actions have the following structure:

$$\begin{array}{c|c} \operatorname{pre}_s(a) & & \operatorname{pre}_o(a) & - - - - + \operatorname{pre}_e(a) \\ \hline & a[5] & \\ \operatorname{eff}_s(a) & \operatorname{eff}_e(a) \\ \hline \end{array}$$

- Temporal **plan** = list of (time, action) pairs.
- The quality of a temporal plan is given by its **makespan**.

Temporal Planning - Events

- An action a can be defined in terms of two discrete events: start $_a$ and end $_a$.
- Two events are simultaneous if they occur exactly at the same time.

• Given an individual event e, no effect of e can be mentioned by another event simultaneous with e [Fox and Long, 2003].

Simple Temporal Networks (STNs)

STNs [Dechter et al., 1991] are used to represent temporal constraints on time variables using a directed graph:

- Nodes = time variables τ_i .
- Edges (τ_i, τ_j) with label $c = \text{constraints } \tau_j \tau_i \leq c$.

Possible outcomes:

- If the STN contains negative cycles, scheduling fails.
- Else, τ_i can take values from $[-d_{i0}, d_{0i}]$ where:
 - d_{ij} = shortest distance from τ_i to τ_j .
 - au $au_0 = 0$ is the reference variable.

Compilation from Temporal to Classical Planning (I)

- \blacksquare STP = **S**imultaneous **T**emporal **P**lanner.
- Extension of the TP planner [Jiménez et al., 2015] to handle simultaneous events:
 - **1** Add STNs to Fast Downward (FD):
 - STN: checks temporal constraints.
 - FD: manages preconditions and effects.
 - 2 Impose a bound K on the number of active temporal actions.
 - 3 Described for problems with static durations and no duration dependent effects.

Compilation from Temporal to Classical Planning (II)

Compilations to classical must ensure that [Coles et al., 2009]:

- 1 Temporal actions end before reaching the goal.
- **2** Contexts (pre_o) are not violated.
- Temporal constraints are preserved.

Compilation from Temporal to Classical Planning (III)

The compilation divides each joint event in 3 phases:

- End phase: active actions are scheduled to end.
- Event phase: simultaneous events take place.
- ${f 3}$ Start phase: check that ${\sf pre}_o$ of active actions are satisfied.

Compilation from Temporal to Classical Planning (IV)

- C: cyclic counter $(0, \ldots, C, 0, \ldots)$, counts the number of end phases.
- Motivation: avoid ignoring states that are
 - propositionally identical, and
 - 2 temporally different.

Compilation from Temporal to Classical Planning (V)

Modifications applied to Fast Downward [Helmert, 2006]:

- Each search node contains an STN.
- When a successor node is generated:
 - 1 The STN of its predecessor is copied.
 - **2** A new edge (τ_i, τ_j) is added to the STN.
 - 3 Shortest paths are recomputed.

Compilation from Temporal to Classical Planning (VI)

Introduce temporal constraints every time we generate events:

1 For a concurrent event $\{e_1,\ldots,e_k\}$, add constraints

$$\tau_{e_j} \le \tau_{e_{j+1}}, \tau_k \le \tau_1$$

to ensure they occur at the same time.

2 For each active action a^\prime that started before and has to end after the concurrent event, add

$$\tau_{e_j} + u \le \tau_{a'} + d(a').$$

3 For two consecutive concurrent events $\{e_1,\ldots,e_k\}$ and $\{e'_1,\ldots,e'_m\}$, add constraint

$$\tau_{e_k} + u \le \tau_{e'_1}.$$

u =slack unit of time

Simple Temporal Networks (STNs) - Example (I)

Time

 end_{i_0}

Target scheduling $i_1[5]$ $i_3[5]$ $i_2[11]$

endi. startio

- 1 start i_1 , start i_2
- 2 end $_{i_1}$
- 3 start $_{i_3}$
- $\mathbf{4} \; \mathsf{end}_{i_2}, \mathsf{end}_{i_3}$

STN constraints

starti.

 $start_i$

$$\tau_{i_1} < \tau_{i_1} + d(i_1),$$

$$\tau_{i_2} < \tau_{i_1} + d(i_1),$$

$$\tau_{i_1} + d(i_1) < \tau_{i_3},$$

$$\tau_{i_3} < \tau_{i_3} + d(i_3),$$

$$\tau_{i_3} < \tau_{i_2} + d(i_2),$$

$$\begin{split} &\tau_{i_1} \leq \tau_{i_2}, \\ &\tau_{i_2} \leq \tau_{i_1}, \\ &\tau_{i_3} + d(i_3) \leq \tau_{i_2} + d(i_2), \\ &\tau_{i_2} + d(i_2) \leq \tau_{i_3} + d(i_3). \end{split}$$

Simple Temporal Networks (STNs) - Example (II)

Target scheduling

1 start i_1 , start i_2

- 2 end $_{i_1}$
- 3 start $_{i_3}$
- $\mathbf{4}$ end $_{i_2}$, end $_{i_3}$

Reformulated STN constraints

$$\begin{aligned} & \tau_{i_1} - \tau_{i_1} \le 5 - u, \\ & \tau_{i_2} - \tau_{i_1} \le 5 - u, \\ & \tau_{i_1} - \tau_{i_3} \le -5 - u, \\ & \tau_{i_3} - \tau_{i_3} \le 5 - u, \\ & \tau_{i_2} - \tau_{i_2} \le 11 - u, \end{aligned}$$

$$\begin{split} &\tau_{i_1} - \tau_{i_2} \leq 0, \\ &\tau_{i_2} - \tau_{i_1} \leq 0, \\ &\tau_{i_3} - \tau_{i_2} \leq 6, \\ &\tau_{i_2} - \tau_{i_3} \leq -6. \end{split}$$

Simple Temporal Networks (STNs) - Example (III)

- 1 start i_1 , start i_2
- $oldsymbol{2}$ end $_{i_1}$
- 3 start $_{i_3}$
- $\mathbf{4} \; \mathsf{end}_{i_2}, \mathsf{end}_{i_3}$

Resulting STN

Experiments - Coverage and IPC quality (I)

	TPSHE	TP(3)	TP(4)	STP(3)	STP(4)	POPF2	YAHSP3-MT	ITSAT
AIA[25]	3/3	7.5/9	8.5/10	19.51/24	23.5/25	10/10	3/3	3/3
Cushing[20]	0/0	4.07/20	4.93/20	3.31/14	2.28/5	20/20	0/0	0/0
Driverlog[20]	14.78/15	1.08/4	0.91/3	0/0	0/0	0/0	2.31/4	1/1
DLS[20]	9.37/11	7.7/9	8.06/9	3.9/4	3.49/4	7/7	0/0	16.18/19
Floortile[20]	0/0	0/0	0/0	0/0	0/0	0/0	4.93/5	19.7/20
MapAnalyser[20]	17.38/20	12.34/ 20	12.02/19	10.09/16	7.69/12	0/0	1/1	0/0
Matchcellar[20]	15.72/ 20	15.71/ 20	15.71/ 20	15.71/ 20	15.71/ 20	20/20	0/0	18.91/19
Parking[20]	6.73/ 20	5.67/17	5.33/16	1.93/6	1.93/6	12/13	16.84/20	0.96/6
RTAM[20]	16/16	2.73/6	2.79/6	0/0	0/0	0/0	0/0	0/0
Satellite[20]	16.63 /18	5.04/13	4.67/12	0/0	0/0	2.92/3	13.82/ 20	1.68/7
Storage[20]	4.92/ 9	0/0	0/0	0/0	0/0	0/0	3.91/ 9	9/9
TMS[20]	0.06/9	0/0	0/0	0/0	0/0	0/0	0/0	16/16
Turn&Open[20]	15.53/19	5.03/10	5.19/10	0/0	0/0	7.31/8	0/0	5.88/6
Total	120.12/160	66.87/128	68.11/125	54.45/84	54.61/72	79.22/81	45.8/62	92.3/106

Experiments - Coverage and IPC quality (II)

- STP is top performer at AIA (only domain with simultaneous events).
- Bad performance in domains with simpler forms of concurrency but combinatorially challenging.
- lacktriangle Higher values of K usually improve performance.

Conclusions

- Method that returns sound temporal plans if used in a forward-search planner maintaining STNs.
- Good performance in domain requiring simultaneous events.
- Not competitive in combinatorially challenging domains requiring simpler forms of concurrency.

Future work: Analyze problems before solving them \rightarrow Choose an appropriate solver.

Questions

- Contact:
 - daniel.furelos@upf.edu
 - anders.jonsson@upf.edu
 - hector.palaciosverdes@nuance.com
 - serjice@dsic.upv.es
- Software and domains: https://github.com/aig-upf/temporal-planning

Coles, A., Fox, M., Halsey, K., Long, D., and Smith, A. (2009).

Managing concurrency in temporal planning using planner-scheduler interaction.

Artif. Intell., 173(1):1–44.

Cooper, M. C., Maris, F., and Régnier, P. (2013).

Managing Temporal Cycles in Planning Problems Requiring Concurrency. *Computational Intelligence*, 29(1):111–128.

Dechter, R., Meiri, I., and Pearl, J. (1991).

Temporal Constraint Networks.

Artif. Intell., 49(1-3):61-95.

Fox, M. and Long, D. (2003).

PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains.

J. Artif. Intell. Res. (JAIR), 20:61-124.

Helmert, M. (2006).

The Fast Downward Planning System.

J. Artif. Intell. Res. (JAIR), 26:191-246.

Jiménez, S., Jonsson, A., and Palacios, H. (2015).

Temporal Planning With Required Concurrency Using Classical Planning.

In Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015., pages 129–137.

Long, D. and Fox, M. (2003).

Exploiting a Graphplan Framework in Temporal Planning.

In Proceedings of the Thirteenth International Conference on Automated Planning and Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy, pages 52–61.

Rintanen, J. (2015).

Models of Action Concurrency in Temporal Planning.

In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1659–1665.